

Trends of the Periodic Table

Understanding the Basics of Atoms, Elements, and Periodic Trends

What is an Atom?

- The **smallest unit** of an element that retains the properties of that element.
- Composed of three subatomic particles:
 - Protons: Positively charged, located in the nucleus.
 - Neutrons: No charge, located in the nucleus.
 - Electrons: Negatively charged, orbiting the nucleus in electron shells.

Subatomic Particles

• Protons (p⁺):

- Determine the element's identity (e.g., Hydrogen has 1 proton).
- The **atomic number** is equal to the number of protons.
- Neutrons (n°):
 - Vary in isotopes, contributing to atomic mass.
- Electrons (e⁻):
 - Occupy electron shells, important in chemical bonding.
 - In a **neutral atom**, the number of electrons equals the number of protons.

How to read a Periodic Table

Periodic Table of Elements

Understanding Atomic and Mass Numbers

- Atomic Number (Z): Number of protons in the nucleus.
- Mass Number (A): Sum of protons and neutrons in the nucleus.
- Example: Carbon-12
 - Atomic number = 6 (6 protons)
 - Mass number = 12 (6 protons + 6 neutrons)

What are lsotopes?

- Atoms of the same element with **different numbers of neutrons.**
- Same atomic number but different mass numbers.
- Example: Carbon-12 vs. Carbon-14
 - Carbon-12: 6 protons, 6 neutrons.
 - Carbon-14: 6 protons, 8 neutrons.

How to calculate protons, electrons

and neutrons using of isotopes

Carbon-12 vs. Carbon-14

• Carbon-12:

6 protons, 6 neutrons.

• Carbon-14:

6 protons, 8 neutrons

How are Elements Organized?

- Elements are organized by increasing atomic number.
- Groups/Columns:
 - Vertical columns, elements have similar chemical properties.
- Periods/Rows:
 - Horizontal rows, properties change progressively across a period.

Metals, Nonmetals, and Metalloids

• Metals:

- Good conductors of heat and electricity, malleable, ductile.
- Located on the left side and center of the periodic table.

Nonmetals:

- Poor conductors, brittle in solid form, found on the right side.
- Metalloids:
 - Properties of both metals and nonmetals, found along the "staircase" line.

Understanding lons and Bonding

	Atomic Ions																
1A	2A		Most common form on top														
Н+												ЗA	4A	5A	6A	7A	He
Li+	Be ²⁺											В	С	N ³⁻	O ²⁻	F	Ne
Na ⁺	Mg ²⁺	3В	4B	5B	6B	7B		8B	_	1B	2B	Al ³⁺	Si	P ³⁻	S ²⁻	CI	Ar
к+	Ca ²⁺	Sc ³⁺	Ti ³⁺ Ti ⁴⁺	V^{3+} V^{5+}	Cr ³⁺ Cr ²⁺	Mn ²⁺ Mn ⁴⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺ Ni ³⁺	Cu ²⁺ Cu ⁺	Zn ²⁺	Ga ³⁺	Ge ⁴⁺	As ³⁻	Se ²⁻	Br⁻	Kr
Rb+	Sr ²⁺	Y ³⁺	Zr ⁴⁺	Nb ⁵⁺ Nb ³⁺	Mo ⁶⁺	Tc ⁷⁺	Ru ³⁺ Ru ⁴⁺	Rh ³⁺	Pd ²⁺ Pd ⁴⁺	Ag ⁺	Cd ²⁺	In ³⁺	Sn ⁴⁺ Sn ²⁺	${ m Sb}^{3^+}$ ${ m Sb}^{5^+}$	Te ²⁻	Ι-	Xe
Cs+	Ba ²⁺	La ³⁺	Hf ⁴⁺	Ta ⁵⁺	W ⁶⁺	Re ⁷⁺	Os ⁴⁺	Ir ⁴⁺	Pt ⁴⁺ Pt ²⁺	Au ³⁺ Au ⁺	Hg ²⁺ Hg ⁺	ТІ ⁺ ТІ ³⁺	Pb ²⁺ Pb ⁴⁺	Bi ³⁺ Bi ⁵⁺	Po ²⁺ Po ⁴⁺	At⁻	Rn
Fr+	Ra ²⁺	Ac ³⁺															

- **Cations:** Positively charged ions (e.g., Na), formed when an atom loses electrons.
- **Anions:** Negatively charged ions (e.g., Cl), formed when an atom gains electrons.
- **Ionic Bonds:** Formed between cations and anions, resulting in a neutral compound (e.g., NaCl).

Key Periodic Table Trends

• Atomic Radius:

- Decreases across a period (left to right) due to increased nuclear charge pulling electrons closer.
- Increases down a group due to added electron shells.
- Ionization Energy:
 - Energy required to remove an electron.
 - Increases across a period, decreases down a group.
- Electronegativity:
 - Tendency of an atom to attract electrons in a bond.
 - Increases across a period, decreases down a group.

Smart

Edition

Nursing

• Atomic Radius Example:

- Compare: Sodium (Na) vs. Chlorine (Cl)
- Sodium has a larger atomic radius than chlorine.

• Ionization Energy Example:

- Compare: Lithium (Li) vs. Fluorine (F)
- Fluorine has a higher ionization energy than lithium.
- Electronegativity Example:
 - Compare: Oxygen (O) vs. Sulfur (S)
 - Oxygen is more electronegative than sulfur.

Smart Edition

Nursing

• Atomic Radius Example:

- Compare: Sodium (Na) vs. Chlorine (Cl)
- Sodium has a larger atomic radius than chlorine.
- Atomic Radius Trend Across a Period:
 - The atomic radius decreases from left to right across a period because the number of protons increases, pulling the electron cloud closer to the nucleus.
- Atomic Radius Trend Down a Group:
 - The atomic radius increases as you move down a group because additional electron shells are added, making the atom larger.

Smart Edition

Nursing

• Ionization Energy Example:

- Compare: Lithium (Li) vs. Fluorine (F)
- Fluorine has a higher ionization energy than lithium.

• Ionization Energy Trend Across a Period:

- Ionization energy increases from left to right across a period because the atoms are smaller and more tightly hold onto their electrons.
- Ionization Energy Trend Down a Group:
 - Ionization energy decreases as you move down a group because the outer electrons are farther from the nucleus and more easily removed.

Smart Edition

Nursing

- Electronegativity Example:
- Compare: Oxygen (O) vs. Sulfur (S)
- Oxygen is more electronegative than sulfur.
- Electronegativity Trend Across a Period:
- Electronegativity increases from left to right across a period because atoms are smaller and more effective at attracting electrons.
- Electronegativity Trend Down a Group:
- Electronegativity decreases as you move down a group because the increased atomic size makes it harder for the nucleus to attract electrons.

Smart Edition

- Atoms consist of protons, neutrons, and electrons.
- **Isotopes** are atoms of the same element with different neutrons.
- The periodic table is organized by **atomic number.**
- Elements are categorized into **metals, nonmetals,** and **metalloids.**
- Understand the formation of **cations, anions,** and **ionic bonds.**
- **Periodic trends** include atomic radius, ionization energy, and electronegativity.